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Motivation
• Two groups (not label classes) of instances with equal size

- Empirical Risk Minimization (ERM) of instances from two groups:

Clean: no noise 
➜ equal #instances contribute to clean loss 
➜ equal weights in ERM

CDN: equal noise 
➜ equal #instances contribute to clean loss 
➜ equal weights in ERM

IDN: Group 2: larger noise 
➜ less #instances contribute to clean loss 
➜ smaller weights in ERM



Insufficiency of First-Order Statistics
• Lemma: Peer Loss [4] is invariant to CDN: NoisyPL = ω · CleanPL

[4] Y. Liu & H. Guo. “Peer loss functions: Learning from noisy labels without knowing noise.” ICML’20.

Summary: 
➥ IDN causes weights imbalances

➥ CDN: 
- Only one unknown constant ω. 
- Equal for all features.

➥ IDN: 
- Multiple unknown constants ωg.
- Down-weight high-noise features
(Section 3.3 in our paper). 



Covariance-Assisted Learning (CAL)
• Our method: 

- Peer Loss + Covariance (requires constructing Bayes optimal dataset for estimating T):

Summary: 
➥ CAL balances weights of each feature

- High-noise (Group I, Group  II): improve weights
- Low-noise (Group III, Group IV): reduce weights

➥
➥ Theorem 3 (in our paper): 

With perfect covariance estimates, CAL is robust to IDN

IDN
Covariance Peer Loss

CDN Clean

✨ Challenging!
(Details in the next slide)



Bayes Optimal Labels

[5] H. Cheng, et al. “Learning with instance-dependent label noise: A sample sieve approach." ICLR'21.

✨Rely on Bayes optimal labels
○ Unique
○ Tractable 

Type Prob. Each Class

Clean 0.9 0.1

Noisy 0.6 0.4

Bayes opt. 1.0 0.0

Example:
Use CORES [5]:
A theoretically guaranteed sample sieve 
to find the Bayes optimal labels!



Experiment

[5] H. Cheng, et al. “Learning with instance-dependent label noise: A sample sieve approach." ICLR'21.

Thank you !
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